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Abstract: Demand for reliable estimates of streamflow has increased as society becomes more
susceptible to climatic extremes such as droughts and flooding, especially at small scales where local
population centers and infrastructure can be affected by rapidly occurring events. In the current study,
the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) (NOAA/NWS, Silver
Spring, MD, USA) was used to explore the accuracy of a distributed hydrologic model to simulate
discharge at watershed scales ranging from 20 to 2500 km2. The model was calibrated and validated
using observed discharge data at the basin outlets, and discharge at uncalibrated subbasin locations
was evaluated. Two precipitation products with nominal spatial resolutions of 12.5 km and 4 km
were tested to characterize the role of input resolution on the discharge simulations. In general,
model performance decreased as basin size decreased. When sub-basin area was less than 250 km2 or
20–40% of the total watershed area, model performance dropped below the defined acceptable levels.
Simulations forced with the lower resolution precipitation product had better model evaluation
statistics; for example, the Nash–Sutcliffe efficiency (NSE) scores ranged from 0.50 to 0.67 for the
verification period for basin outlets, compared to scores that ranged from 0.33 to 0.52 for the higher
spatial resolution forcing.
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1. Introduction

Hydrologic models are essential for improving our understanding of the various components of
the hydrologic cycle and are valuable tools for water resources modeling, drought and flood forecasting,
and climate change impact assessment studies. In recent decades, efforts have been made to advance
hydrologic modeling and forecasting through the use of spatially distributed models [1–6]. Spatially
distributed models are supported by readily available geographic information system (GIS) data and
rapidly increasing computing power, and it has been anticipated that spatially distributed models
would provide more accurate and timely hydrologic information due to their innate ability to account
for basin heterogeneities and spatially distributed inputs [7–11]. Critically, distributed models are able
to simulate hydrologic responses at interior locations within the basin drainage network, a benefit not
afforded by lumped models.

Quantifying hydrologic variability across a range of scales is a primary focus of the prediction
in ungauged basins (PUB) initiative, where ungauged basins are described as “one with inadequate
records (in terms of both data quantity and quality) of hydrological observations to enable computation
of hydrological variables of interest at the appropriate spatial and temporal scales, and to the accuracy
acceptable for practical applications” [12]. Despite decades of research, hydrologic behavior in
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ungauged basins is still often misunderstood or misrepresented in model applications [13]. This is
largely because there is an incomplete process understanding of the multi-scale spatial-temporal
heterogeneities across different landscapes and climates [14].

From an operational standpoint, distributed models provide an opportunity to expand the
information available in forecasts, including streamflow at interior locations, uncertainty assessment,
and soil moisture conditions [10,11,15,16]. Fang et al. [17] showed that the use of appropriately
structured flexible, distributed models with a-priori estimation from on-site measurements could
produce robust estimations of snowpack, soil moisture, and streamflow at multiple scales. Another
study by Reed et al. [18], as part of the first phase of the Distributed Model Inter-Comparison Project
(DMIP), reported that when calibrated to the outlet of larger parent basins, distributed models produced
reasonable performance at interior locations where no explicit calibration was conducted. However,
when these models were calibrated at the outlet of relatively smaller parent basins, a degradation of
the performance at interior locations was observed. They argued that the lack of explicit calibration at
interior sites does not fully explain poor model performance at these points.

Given the increasing demands for higher resolution information at scales necessary to support
water resources relevant forecasts [14], the Office of Hydrologic Development (OHD) developed the
Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) [1,2]. The HL-RDHM uses
the spatially distributed version of the Sacramento Soil Moisture Accounting model (SAC-SMA) [19]
and supports investigations such as forecasting at an increased number of locations (interior points),
improving flash flood information, and utilizing a framework to test new spatially distributed
products [20]. While distributed models can represent the spatial variability of watershed response in
a more realistic manner than the traditional lumped modeling, it is also necessary to properly account
for the spatial variability of precipitation to accurately characterize the hydrologic response [21,22].
In this study, we aim (1) to quantify how the accuracy of simulated discharge changes with basin scale
for a distributed model calibrated only to the outlet, and (2) to characterize the impact of the spatial
resolution of precipitation inputs on the accuracy of simulated streamflow across basin scales. Both
these objectives further the understanding of modeling and forecasting for small ungauged basins.

Using the HL-RDHM framework, we tested two precipitation products with varying spatial
resolutions, the North American Land Data Assimilation System Phase 2 (NLDAS-2) with a nominal
12.5 km resolution and the Stage IV quantitative precipitation estimate with an approximate 4 km
resolution, as hydrologic model input. Discharge simulations were conducted for three watersheds in
the North-Central United States for the evaluation period 2003–2016. The model was calibrated with
observed discharge from each watershed outlet, defined as the location of a United States Geological
Survey (USGS) gage. Interior locations were left uncalibrated and used to evaluate model performance
and predictive uncertainty for interior ungauged basins.

2. Materials and Methods

2.1. Hydrologic Model

The HL-RDHM is a spatially distributed hydrologic model that includes a rainfall-runoff model
(the Sacramento Soil Moisture Accounting Model; SAC-SMA) (NOAA/NWS, Silver Spring, MD, USA),
a snow model (SNOW-17) (NOAA/NWS, Silver Spring, MD, USA), and hillslope watershed and channel
routing models to simulate hydrologic processes. We used the modified version of the SAC-SMA,
referred to as the SAC-SMA Heat Transfer model (SAC-HT) (NOAA/NWS, Silver Spring, MD, USA),
within the HL-RDHM V3.5.1. The SAC-HT incorporates a physically-based frozen ground model [23].
The SAC-HT accounts for storage and flow in the subsurface using a two-layer soil structure. Each
zone has free water storages that represent water drained by gravitational forces and tension water
storages that represent water removed through evaporation and transpiration. Discharge contributions
to the stream occur from both upper and lower zones representing surface runoff, interflow, and
baseflow processes. Surface runoff occurs when precipitation exceeds the interflow and percolation
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capacities and the upper zone tension storage is full [24]. The SNOW-17 is a snow accumulation
and ablation model that uses air temperature as an index to determine energy exchange across the
snow–air interface [25]. The surface and subsurface flow routing processes are based on hillslope
slope, roughness, and drainage density. Water is routed from upstream to downstream cells by using
a cell-to-cell connectivity file. The connectivity sequence was developed by the OHD and defined
using surface flow directions derived from a digital elevation model (DEM). Inputs to the model are
precipitation, temperature, and potential evapotranspiration (PET). PET is commonly input as daily
values that are uniformly interpolated into the specified model time step.

The spatial resolution of the HL-RDHM is based on the Next Generation Weather Radar (NEXRAD)
Hydrologic Rainfall Analysis Project (HRAP) grid coordinate system [1,8]. The HRAP coordinate
system is a polar stereographic projection at a nominal grid spacing of 4 km × 4 km, or 1 HRAP pixel;
however true pixel size varies with latitude [26]. Model simulations were run at an hourly time step
and at the default 1 HRAP spatial resolution with a yearlong initialization period (2002) to allow model
states to equilibrate.

2.2. Study Area

Three basins in the north central United States, one basin in Iowa and two basins in Minnesota
(Figure 1), were selected for study based on discharge data availability at and upstream of the basin
outlet. All watersheds are within the Upper Mississippi River basin and are forecast points of the
National Weather Service (NWS) North Central River Forecast Center (NCRFC) in Chanhassen, MN.
The drainage area of the basins range from 542 km2 to 3493 km2 (Tables 1–3). Each basin is partitioned
into 5–8 subbasins (Figure 1) depending on the location of available upstream data. The subbasins, or
interior locations, range in size from 19 km2 to 2429 km2 (Tables 1–3).
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Table 1. Squaw Creek basin and subbasins gage sites. The outlet of Squaw Creek watershed, denoted
with “*”, has United States Geological Survey station ID 05470500 and US National Weather Service
ID AMWI4.

Site ID Location Period of Record Area (km2)

AMWI4 * Ames, IA 1990–2016 542
SQ2 Ames, IA 2010–2016 531
SQ3 Gilbert, IA 2012–2016 364
SQ4 Story City, IA 2012–2016 224
SQ5 Stanhope, IA 2012–2016 137

Prairie Gilbert, IA 2012–2016 37
Onion Ames, IA 2012–2016 46
Glacial Story City, IA 2012–2016 25

Table 2. Le Sueur River basin and subbasins gage sites. The outlet of Le Sueur River watershed,
denoted with “*”, has United States Geological Survey station ID 05320500 and US National Weather
Service ID RPDM5.

Site ID Location Period of Record Area (km2)

RPDM5 * Rapidan, MN 1993–2016 2877
LERAP8 Rapidan, MN 2006–2016 1165
LESTCL St. Clair, MN 2007–2016 911

MAPRAP Rapidan, MN 2003–2016 867
MASTER Sterling Center, MN 2006–2016 779
BIGCOB Beauford, MN 2006–2016 807
LICOBB Beauford, MN 1996–2010 337
LBEAUF Beauford, MN 2010–2016 19

Table 3. Cannon River basin and subbasins gage sites. Outlet of the Cannon River watershed, denoted
with “*”, has United States Geological Survey station ID 05355200 and US National Weather Service
ID WLCM5.

Site ID Location Period of Record Area (km2)

WLCM5 * Welch, MN 1993–2016 3493
CANORT Northfield, MN 2012–2016 2429
CAFARI Faribault, MN 2013–2016 2128

CAMORR Morristown, MN 2007–2015 588
CASOGN Sogn, MN 2007–2010 142
LCANNO Cannon Falls, MN 2005–2010 222
PINECR Cannon Falls, MN 2010 35

The study area has topographic relief of less than 200 m of total elevation change [27]. The landscape
surrounding the Squaw and Le Sueur basins, located in Iowa and Southern Minnesota, is dominated
by agriculture with large areas of row crops such as corn and soybeans. This agricultural land is
typically made up of the nutrient-rich Mollisol soil order defined by the United States Department of
Agriculture soil taxonomy. Land use in South-Eastern Minnesota, the location of the Cannon River
basin, is predominantly agriculture or forestland. Based on the Natural Resources Conservation Service
Soil Survey Geographic (SSURGO) database, soils in the Cannon River basin are a combination of
both mollisols and alfisols; the alfisols soil group is a clay-enriched subsurface region most commonly
found in forested areas. In Iowa and Southern Minnesota, artificial drainage networks are commonly
used to drain soils and lower the water table to promote crop growth. Field monitoring studies have
suggested that drainage from tiles increases annual baseflow in streams [28,29]. Tile drainage is not
explicitly included in the utilized model.

Each study basin experiences similar climatic conditions, and depending on the time of year, is
subject to various meteorological extremes. In summer months, convective thunderstorms are common
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due to moisture transported from the Gulf of Mexico. These convective systems account for most of
the annual precipitation for the study area, occurring from early spring into late summer. Annual
precipitation amounts averaged over 12 years ranges from 773 mm in southern Minnesota (45◦ N) to
950 mm in central Iowa (42◦ N) (Table 4). Conversely, winters are cool and drier with precipitation
commonly occurring in the form of snow.

Table 4. Average annual precipitation totals (mm) for 2002–2013 period from the North Central River
Forecast Center (NCRFC) mean areal precipitation (MAP) data, NLDAS-2, and Stage IV; precipitation
adjustment factors (Adj Factor) for NLDAS-2 and Stage IV; and average annual precipitation for
NLDAS-2 and Stage IV after the adjustment factor was applied.

Basin
Outlet

NCRFC
MAPs
(mm)

NLDAS-2
Precip
(mm)

Adj
Factor

(%)

Adjusted
NLDAS-2

(mm)

Stage IV
Precip
(mm)

Adj
Factor

(%)

Adjusted
Stage IV

(mm)

AMWI4 949 854 10 932 777 18 917
RPDM5 828 742 10 817 724 13 819
WLCM5 773 820 −6 783 783 0 783

2.3. Discharge Data

Hourly and daily discharge data for the basin outlets were obtained from the USGS (Tables 1–3).
Discharge observations at upstream sites within the Minnesota basins were available from the Minnesota
Department of Natural Resources (MN DNR) Stream Hydrology Unit [30]. The MN DNR collects
and quality controls discharge data following the USGS protocols. Data for upstream sites in the
Squaw Creek were collected by the Iowa Flood Center (IFC) [5] using a network of automated stage
sensors. These sensors collect and relay stage data to a central database at 15 min intervals. The data
are available in near real-time through the Iowa Flood Information System (IFIS) [31]. There were
22 bridge-mounted stage sensors installed in Squaw Creek at the time of this study; a subset of these
sites were selected based on data quality and site accessibility.

To convert IFC stage data to discharge, we obtained model-generated rating curves developed
by the IFC using site-specific one-dimensional HEC-RAS models built from Iowa statewide LIDAR
data, existing cross-sectional survey data, and bridge plans (Ricardo Mantilla, University of Iowa,
personal communication, 2 February 2016). Throughout 2015 and 2016, we conducted periodic field
measurements to verify and reduce uncertainty in the modeled curves. Between four to eight manual
discharge measurements were taken at each upstream location in Squaw Creek. During periods of
lower flows, where channel depths were less than 1.5 feet, a wading measurement was conducted
using a hand-held FlowTracker, which employs an Acoustic Doppler Velocimeter (ADV). For moderate
to high flows, measurements were taken from the bridge using an Acoustic Doppler Current Profiler
(ADCP). A measurement transect was completed by navigating the boat in a straight line normal to
the direction of flow, while the ADCP collects depth, distance, and velocity data. A minimum of four
transects were made to ensure the average difference of the discharge from each transect was less than
6%. Manual discharge measurements were added to modeled rating curves and a polynomial equation
was applied to fit a curve through both modeled and measured points along the curve.

2.4. Model Inputs

PET data were obtained from the OHD and consisted of long-term average PET at the HRAP
resolution. The PET values represent mid-month values from which daily values are linearly
interpolated. PE adjustment factors for each month account for the seasonal variability in vegetation
through the course of a year [20].

Hourly air temperature (at 2-m) and precipitation from the NLDAS-2 were used. These data
are derived using the National Center for Environmental Protection’s (NCEP) Eta-model-based Data
Assimilation System (EDAS) [32]. The NLDAS-2 [33] hourly precipitation product is created by
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NCEP through merger of satellite, radar, and observation-based data and generated at a 1/8th degree
(~12.5 km) spatial resolution [34]. In this study, the geographic coordinates of each 1/8th degree pixel
were converted to the HRAP coordinate system and disaggregated into a 4-km resolution for input
into the HL-RDHM. NLDAS-2 precipitation grids are available from 1996 to present.

Given the focus on localized, summer rainfall events, we included a second analysis using the
NCEP Stage IV product, which has a higher spatial resolution than the NLDAS-2. Stage IV is a mosaic
of the multi-sensor hourly/6-hourly Stage III analyses produced by the 12 RFCs in the continental
United States (CONUS) via manual quality control performed on the Stage III data. Stage IV has
a spatial resolution of 16 km2 and is a combination of ground-based gage observations and radar
calculated reflectivity. The hydrological and meteorological communities commonly use this product
as a reference for gridded rainfall estimates due to its national coverage and high spatial and temporal
resolutions [35,36]. Hourly Stage IV data is available at HRAP resolution from 2002 to present.

Initial model simulations indicated discharge tended to be underestimated with both precipitation
inputs. Studies have indicated a low bias in the NLDAS-2 derived precipitation product, depending on
the region [33,37]. Similarly, Prat and Nelson [38] determined that Stage IV exhibits a considerable low
bias in comparison with surface observations on a seasonal scale, with differences ranging from −18%
to −2% for winter and from −28% to 8% for summer. In our analysis, we found that the NLDAS-2 and
Stage IV inputs were consistently lower than the mean areal precipitation (MAP) data provided by the
NCRFC (our ground-truth) for each study basin. To correct for the low bias, a precipitation adjustment
factor was developed by calculating the average difference between the individual precipitation
product (NLDAS-2 and Stage IV) and the MAP data from 2002 to 2013 (Table 4) following an approach
used in Spies et al. [27]. This precipitation adjustment factor can be defined within HL-RDHM and is
applied to each HRAP pixel in the specified basin.

2.5. Model Calibration and Validation

There are 16 parameters in the HL-RDHM used to reflect basin characteristics and parameter
values can vary by grid. Default a-priori parameter grids [8] were used as an initial starting point
for parameter calibration for each basin. To improve calibration efficiency, basin-scale parameter
multipliers, rather than the parameters in each grid, were calibrated and applied to the a-priori
parameter grids. This method greatly reduces the number of parameters needed in the calibration
process, while maintain the spatial information provided by the a-priori parameters [20]. Prior studies
show that this technique is an effective way of improving a-priori model parameter grids [1,27,39].

The parameter multipliers were calibrated using an automated Stepwise Line Search (SLS)
procedure [20]. The SLS technique successively steps through each parameter to optimize the
multi-scale objective function for each parameter. If values remain static for three consecutive loops,
the parameter multiplier is removed from further manipulation. Ten parameters were selected for
calibration with multiplier ranges based on previous studies [27,40–45]. Identifying the maximum and
minimum multipliers for each parameter was done using the following method [27]:

xmin = α/pmin (1)

xmax = α/pmax (2)

where xmin and xmax represent the minimum and maximum multipliers, pmin and pmax are the minimum
and maximum values for the parameter, and α indicating the mean basin a-priori parameter value.

The model was calibrated for each precipitation input (NLDAS-2 and Stage IV) separately and
using observed discharge at the outlet as the calibration criteria. To assess the accuracy of the model
for simulating discharge at interior points that may be ungauged, no calibration was done using data
from interior locations. The data set spans 2002–2016 for which we have a continuous record of input
data. The calibration (2003–2009) and validation (2010–2016) period used a one year initialization
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period (2002) to allow model states to equilibrate. The calibration period contained both very wet and
dry periods.

To capture the flashy response times of the small upstream basins, it was necessary to run
the HL-RDHM at an hourly time step, requiring the use of hourly discharge aggregated from the
instantaneous data. To verify the suitability of the hourly USGS discharge data for this study,
we calibrated the HL-RDHM parameters to both hourly (real-time) and daily (quality controlled)
observed discharge in two separate trials for each site, using both precipitation inputs. Time periods
with missing hourly data (occurring for winter months due to icing), were omitted from the calibration
process. Overall, the differences in model evaluation scores (defined in Section 2.6) were minor;
calibration to hourly data produced higher NSE scores while the calibration to daily data produced
better Pbias scores. Given the minimal differences between using hourly and daily discharge data for
calibration, study results will focus on the hourly simulations.

2.6. Evaluation Statistics

Four statistical metrics were used to evaluate simulated discharge: Percent Bias (Pbias), coefficient
of determination (R2), Nash–Sutcliffe efficiency (NSE), and mean absolute percent deviation (MAPD)
are shown below.

Pbias =

[∑n
i=1 (xsim,i − xobs,i) × 100∑n

i=1 xobs,i

]
(3)

R2 =


∑n

i=1 (xsim,i − xsim)(xobs,i − xobs)√∑n
i=1 (xsim,i − xsim)

2
√∑n

i=1 (xobs,i − xobs)
2


2

(4)

NSE = 1−

∑n
i=1 (xobs,i − xsim,i)

2∑n
i=1 (xobs,i − xobs)

2

 (5)

MAPD = 100%

∑n
i=1

∣∣∣xsim,i − xobs,i
∣∣∣∑n

i=1

∣∣∣xobs,i
∣∣∣ (6)

Pbias measures the relative tendency of simulated flows to be larger or smaller than observed
counterparts. Positive values indicate overestimation, negative values indicate underestimation,
and the optimal value is zero. NSE measures the relative magnitude of the residual variance compared
to the measured data variance. Values range from −∞ to 1.0, with 1.0 being the optimal value where
model simulation match observed discharge. MAPD is the mean absolute error as a percentage of the
deviation from observed.

Model evaluation criteria established by Moriasi et al. [46] define a model simulation as
“satisfactory” if NSE > 0.50 and Pbias ±25% for streamflow simulations with a monthly timestep.
Given that models exhibit poorer performance when evaluated at shorter time steps [47], we used an
NSE > 0.40 threshold to identify a result as acceptable for an individual basin at the hourly timestep.
R2, Pbias, and MAPD are percent error metrics and are suitable for comparing across different data
sets [48], they are used evaluated how model error changes across basin scales.

3. Results

3.1. Model Performance with NLDAS-2 Precipitation

Model performance measures indicated that the HL-RDHM reproduced the observed hourly
flows at each outlet with reasonably low Pbias and good correlation (Table 5). MAPD values for
the calibration ranged from 37.6% to 57.2%. Statistics tended to be poorer for the validation periods
compared to the calibration period, for example, NSE scores at basin outlets ranged from 0.57 to 0.75
for the calibration period and from 0.50 to 0.67 for the validation period. Pbias was lowest for AMWI4
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and WLCM4. Pbias scores indicated that discharge for RPDM5 was overestimated for the calibration
period, which could be a result of the overestimated baseflow in the RPDM5 (Figure 2). Several larger
events (one in 2010 and a few in 2015) were observed to be underestimated and likely resulted in the
switch to a negative Pbias for RPDM5 during the validation period. In general, simulated hydrographs
at basin outlets generally matched the observed discharge for low and intermediate flows, while high
flows were often underestimated in the both calibration and validation periods (Figure 2). Event timing
was simulated relatively accurately although the simulated peak was delayed in a few events.
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Figure 2. Simulated vs. observed discharge hydrographs for basin outlets for March–September 2008,
which is during the calibration period.

Table 5. Percent bias (Pbias), coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) and
mean absolute percent deviation (MAPD) for the calibration (cal) and validation (val) period for model
runs using NLDAS-2 forcing. * Denotes basin outlet.

Site
Pbias (%) R2 NSE MAPD (%)

cal val cal val cal val cal val

Squaw Creek basin
AMWI4 * −3.0 −2.8 0.75 0.67 0.75 0.67 43.77 50.4

SQ2 - 0.5 - 0.58 - 0.57 - 27.5
SQ3 - −2.2 - 0.43 - 0.43 - 36.8
SQ4 - −27.1 - 0.42 - 0.40 - 33.4
SQ5 - −40.7 - 0.30 - 0.22 - 39.5

Prairie - −57.8 - 0.33 - 0.20 - 29.3
Onion - −41.8 - 0.39 - 0.30 - 79.3
Glacial - −54.1 - 0.28 - 0.20 - 15.8

LeSueur River basin
RPDM5 * 28.7 −8.1 0.68 0.62 0.63 0.59 57.2 52.2
LERAP8 17.7 −2.3 0.68 0.59 0.58 0.56 50.8 56.3
LESTCL 5.4 −2.7 0.61 0.57 0.60 0.53 48.6 52.1

MAPRAP 14.0 −4.2 0.56 0.45 0.55 0.39 59.1 64.3
MASTER 3.9 0.1 0.67 0.51 0.67 0.45 52.0 62.4
BIGCOB 9.0 −3.3 0.60 0.46 0.59 0.43 53.7 61.9
LICOBB 25.9 - 0.57 - 0.34 - 64.2 -
LBEAUF - −33.9 - 0.14 - 0.11 - 86.5
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Table 5. Cont.

Site
Pbias (%) R2 NSE MAPD (%)

cal val cal val cal val cal val

Cannon River basin
WLCM5 * 0.2 −21.4 0.60 0.53 0.57 0.50 37.6 40.0
CANORT - −17.5 - 0.69 - 0.65 - 49.3
CAFARI - −19.2 - 0.70 - 0.67 - 39.4

CAMORR 62.4 1.7 0.65 0.60 0.35 0.57 82.1 40.2
LCANNO −27.5 - 0.21 - 0.18 - 43.9 -
CASOGN −28.9 - 0.37 - 0.31 - 40.8 -
PINECR - −19.5 - 0.41 - 0.24 - 107.7

R2 and NSE scores were highest for the basin outlet and generally decreased from downstream to
upstream points for AMWI4 and RPDM5 (Table 5). There were four upstream sites with unsatisfactory
NSE scores in the calibration period (as defined in Section 2.6): LICOBB, CAMORR, LCANNO, and
CASOGN. These sites were among the smallest subbasins, representing less than 17% of the area of the
watershed (Table 2; Table 3). PINECR also had an unsatisfactory NSE score, but only had one year
of available data for the validation period, making it difficult to formulate conclusions. NSE values
were above the acceptable threshold level for most downstream points, with basins sizes of 224 km2

(SQ4), 807 km2 (BIGCOB), and 588 km2 (CAMORR) having NSE above 0.40 in the verification period.
MAPD values for these subbasin locations were 27.5% (SQ4), 61.9% (BIGCOB), and 49.3% (CAMORR).
These basins represent 40%, 28%, and 17% of the total basin area for the Squaw, LeSueur, and Cannon
watersheds, respectively. Results for Pbias were varied, with only AMWI4 showing a consistent trend
of increasingly poorer performance from downstream to upstream (Table 5).

There was a general trend of decreasing MAPD with basin area (Figure 3) across all watersheds,
and in particular for the LeSueur and Cannon watersheds. The smallest subbasins in each watershed
studied had distinctly poorer MAPD than the parent basin; these represent 10%, 7%, and 5% of the total
watershed area for the Cannon, LeSueur, and Squaw watersheds, respectively (Figure 3). Two smaller
basins within the Squaw Creek watershed (Prairie and Onion) showed relatively small MAPD and
were outliers in this general correlation of improved MAPD with larger basin size. However, Prairie
and Onion had Pbias values greater than 40%, which was among the worst across all watersheds
(Table 5) and above the ±25% acceptable threshold set by Moriasi et al. [46]. The outlet of Squaw
(AMWI4) also had a higher MAPD than several of the subbasins; however, this site had the best R2 and
low Pbias (Table 5).
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3.2. Model Performances with Stage IV Precipitation

Simulations using the higher resolution Stage IV precipitation product showed more variability in
statistical results compared to the NLDAS-2 data, with NSE values from the calibration period ranging
from −2.8 to 0.77 and from −0.78 to 0.67 for validation (Table 6). NSE scores for basin outlets met
the acceptable threshold of 0.4 for the calibration period. For the verification period, only WLCM5
and RPDM5 had NSE values above the 0.40 threshold and only three subbasins passed this threshold
(Table 6). Discharge was commonly overestimated during the calibration period and underestimated
during the validation period.

Similar to the NLDAS-2 driven simulations, statistics generally improved from small to larger
basin areas. Although, MAPD from the Stage IV simulations were less correlated to the basin area
(Figure 4) compared to NLDAS-2 simulations, for individual watersheds there was a trend towards
smaller MAPD with increased basin size (Figure 4, Table 6). The smallest subbasins again performed
the worst. Overall, MAPD scores were slightly larger for the Stage IV simulations, particularly for the
LeSueur basin.
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Figure 4. Mean absolute percent deviation (MAPD) versus basin area (plotted on a log scale) for all
watersheds and subwatersheds for the calibration (Cal) and verification (Ver) periods for simulated
discharge produced from Stage IV inputs.

Table 6. Percent bias (Pbias), coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) and
mean absolute percent deviation (MAPD) for the calibration (cal) and validation (val) period for model
runs using Stage IV forcing. * Denotes basin outlet.

Site
Pbias (%) R2 NSE MAPD (%)

cal val cal val cal val cal val

Squaw Creek basin
AMWI4 * 11.6 46.8 0.77 0.59 0.77 0.33 47.2 65.2

SQ2 - 69.7 - 0.41 - 0.04 - 35.2
SQ3 - 73.0 - 0.35 - −0.20 - 45.9
SQ4 - 29.4 - 0.36 - −0.78 - 38.2
SQ5 - 3.5 - 0.44 - −0.29 - 41.9

Prairie - −26.2 - 0.24 - 0.22 - 30.6
Onion - −0.10 - 0.38 - 0.38 - 77.9
Glacial - −19.8 - 0.25 - −0.05 - 15.9

LeSueur River basin
RPDM5 * 31.6 3.40 0.59 0.53 0.48 0.52 66.5 60.2
LERAP8 33.2 6.70 0.49 0.52 0.13 0.50 72.0 59.7
LESTCL 8.7 −16.90 0.47 0.32 0.46 0.30 61.2 60.2

MAPRAP 22.8 −0.70 0.46 0.39 0.42 0.33 68.1 73.6
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Table 6. Cont.

Site
Pbias (%) R2 NSE MAPD (%)

cal val cal val cal val cal val

LeSueur River basin
MASTER 23.2 5.00 0.54 0.43 0.47 0.37 65.5 76.4
BIGCOB 39.9 7.00 0.48 0.39 0.16 0.36 79.1 71.2
LICOBB 24.8 - 0.35 - 0.08 - 73.1 -
LBEAUF - −24.9 - 0.14 - 0.11 - 92.2

Cannon River basin
WLCM5 * −6.9 −15.3 0.49 0.53 0.41 0.51 42.0 42.7
CANORT - −3.7 - 0.67 - 0.67 - 59.8
CAFARI - −9.2 - 0.65 - 0.64 - 44.0

CAMORR 62.3 5.1 0.18 0.37 −2.8 −0.26 101.3 45.0
LCANNO −11 - 0.15 - 0.09 - 52.1 -
CASOGN −16.7 - 0.26 - 0.21 - 49.8 -
PINECR - −51.6 - 0.74 - 0.21 - 92.3

3.3. Comparison of NLDAS-2 and Stage IV Simulations

The summary statistics indicated that the HL-RDHM model performance was better for discharge
simulations using the NLDAS-2 precipitation product compared to the Stage IV precipitation. MAPD
was lower for the NLDAS-2 simulations for both the calibration and verification period for all but two
of the smallest subbasins (one in Cannon and one in Squaw) (Table 5; Table 6). Overall, there was
no clear pattern with respect to which precipitation data produced the best model performance for
various basin scales. However, there was a moderately strong inverse correlation between the average
annual precipitation intensity of the Stage IV data and NSE (Figure 5). Although, the HL-RDHM
simulations tended to have the lowest NSE scores in years with the highest average intensities for Stage
IV input, there is considerable scatter, and therefore uncertainty, in this result. NSE scores are more
consistent across precipitation regimes for the NLDAS-2 simulations with no correlation to annual
precipitation intensity.
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for NLDAS and Stage IV for the period of 2003–2016. NSE; IV; R2.

Analysis of simulated hydrographs revealed that Stage IV simulations tended to produce higher
peaks, and often overestimated small events. Hydrographs from Squaw Creek April–July 2014 are
given as a typical example (Figure 6). Stage IV data often resulted in over-estimated discharge peaks,
with larger errors in the spring months as illustrated by simulations for April (Figure 6). In contrast,
NLDAS-2 produced a better match to observations during this April period.
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During the wet warm season of May and June, model results alternated between periods of good
and poor agreement between the two data sets. Commonly, we observed that the higher intensities of
the Stage IV data led to larger peak discharges in late spring and often better simulated peaks when
compared to NLDAS-2. In the example shown in Figure 5, the Stage IV produced much higher and
more accurate peaks, than NLDAS-2 during June.

The larger, flashy events in the smaller watersheds tended to be underestimated in simulations
from both data sets (e.g., Figure 6 Onion, Glacial, and Prairie). This under-simulation explains the
negative Pbias scores and low NSE scores reported for the smallest watersheds (Table 5; Table 6).
Simulated hydrographs for the smallest subwatersheds commonly showed little event response as seen
for Glacial and Prairie subwatersheds (Figure 6); this was also observed in LBEAUF in the LeSueur
River basin.
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4. Discussion

The simulation results for each basin outlet and corresponding upstream location indicated
that model efficiencies increase with increasing basin size. Based on our findings, we infer that the
HL-RDHM model can produce satisfactory streamflow estimates for basins down to ~250 km2. Below
this threshold, model skill became less consistent and more variable, especially for basins less than
50 km2. We found NSE values to be below the acceptable threshold for subbasins that represented less
than 20–40% of the total watershed area. The NSE <0.40 threshold generally corresponded to Pbias
value >±30%, R2 value <0.30, and MAPD values >30%.

The scale effect can be explained by a simpler rainfall–runoff relationship in larger basins as these
larger systems integrate many of the complexities seen at small scales, thus creating better modeling
conditions for larger basins [49]. At the smallest scales studied, both model calibration and the
resolution of the input data can become problematic [50]. We calibrated only using information at the
basin outlet and the decreased model skill with upstream sites may be associated with the calibration
results being unable to reflect the various physical and hydrologic characteristics of subbasins, especially
when estimating high flows in smaller subbasins [51].

Spies et al. [27] suggested that the HL-RDHM (specifically the SAC-HT) may not be able to
capture the full range of hydrologic conditions experienced by watersheds in this region. For this
same study area, they found that model performance was better during the wetter months of spring
when watershed response was faster, whereas performance was poorer in the drier late summer
when watershed response was damped due to lower soil moisture and higher surface roughness from
extensive row crop vegetation cover. Spies et al. [27] noted that the model was limited in its ability
to represent the watershed consistently well across all time periods; in this study we find the model
is also unable to represent watersheds consistently well at all spatial scales tested. In both studies,
a single set of parameters was identified for each watershed. Parameters that are varied in time and
space may improve model performance in this region.

The use of the 4 km resolution of the HRAP cell network may be another source of model error.
It is plausible that the watershed area specified in the connectivity file (used for routing) could be
significantly different from the USGS estimate, 10% or more in some cases [52]. This issue is more
common in basins less than 1000 km2 because basin boundaries cannot be precisely captured by the
coarse resolution grid [20]. This is a significant challenge for small basins where the confluence of
multiple streams could be occurring within a single cell.

Basin characteristics, such as basin slope, may also play a role in the accuracy of the simulations.
Spies et al. [27] found that the HL-RDHM performed the worst in basins characterized by relatively
flat topography (<1.0% average slope) for this same general study area. However, differences in the
average slopes for the basins studied here vary less than 1–2%. In basins with low slopes and poorly
drained soils, agricultural tiles the presence of subsurface tile drainage adds to the uncertainty of
simulations because they were not explicitly represented in the model.

Overall, model statistics were better when using the NLDAS-2 product rather than Stage IV. Our
conclusions surrounding these two precipitation products are similar to Wu et al. [53], who determined
that out of nine Quantitative Precipitation Estimate (QPE) products, including Stage IV, model skill
was highest for simulations forced with NLDAS-2 precipitation. Wu et al. [53], who also studied
basins in Eastern Iowa but with a much larger drainage area (ranging from 2816 km2 to 32,381 km2),
determined that when using NLDAS-2 precipitation to force model simulations, model performance
tends to increase for downstream basins.

The importance of the spatial representation of precipitation likely increases with decreasing
basin size, particularly when simulating discharge at the smallest scales. Smaller basins have less
capacity to dampen out inputs and corresponding input errors, therefore, small-scale variability and
bias in precipitation inputs has the potential to cause greater errors in simulated streamflow for small
basins [18,54]. Faurès et al. [55] demonstrated that even for very small basins less than 1 km2 subject to
convective events, precipitation variability must be considered. However, Brath et al. [56] investigated
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a basin in north central Italy with a drainage area 1050 km2, which is considered “mid-sized” relative
to watersheds used in our study, and suggested that the spatial representation of rainfall was not
important to the streamflow response at the outlet.

Stage IV is often regarded as the reference or ground-truth in Quantitative Precipitation Estimate
(QPE) [57]. However, Chen et al. [57] concluded that Stage IV hourly data underestimated roughly
10% of precipitation volume in the NCRFC region. A primary reason for this is the limited sensitivity
of the radar to frozen precipitation, resulting in underrepresented precipitation across the United
States. As temperatures fall below freezing or a temperature inversion occurs, the effective range of
the WSR-88D radar used to generate Stage IV data decreases, decreasing the likelihood of accurately
retrieving frozen precipitation. In Iowa, many of these events may be viewed as insignificant because
light or frozen precipitation do not generally result in flooding events. However, these precipitation
types can be frequent enough to influence local water budgets and affect soil moisture [57], which
in turn influence the accuracy of simulated low flow discharges and initial soil moisture conditions
leading into larger events in the spring and summer. Precipitation either missed or underrepresented
during the winter months may have affected the calculated precipitation adjustment factor, which is
used to improve the water budget of the model. The adjustment factor was created using analysis
of precipitation throughout the year. If the accuracy of the precipitation data varied by season, for
example underrepresented winter precipitation but accurate summer precipitation, the adjustment
factor may have been larger than necessary to account for the erroneously low precipitation in the
cold months. This could negatively affect discharge simulations by increasing the intensity of summer
events and lead to overestimation of high flows. We could have further manipulated the adjustment
factor to improve results for Stage IV simulations, but to remain consistent in our approach we chose
to adjust the Stage IV input the same way as the NLDAS-2.

The accuracy of the discharge data at non-USGS sites may also be influencing results, and for the
Squaw Creek basin in particular. Mantilla and Krajewski [58] state that the accuracy of the LiDAR
derived cross-section used to create the modeled rating curves is not optimal, a primary reason for not
including them in routine forecasts. We had few manual measurements with which to validate the
rating curve for larger flows in the Squaw Creek. Due to the time period during which measurements
were taken and the short time to peak in the small basins (<6 h), observations are limited to flows in the
intermediate range for larger subbasins and sub-intermediate flows for small basins. Thus, discharge
estimates for high stage observations likely are the most uncertain.

5. Conclusions

While distributed models are capable of producing simulations at interior points, data limitations
make understanding how well the model perform at a range of spatial scales challenging. The objective
of the current study was to investigate how the accuracy of a spatially distributed model, when
calibrated only to the basin outlet, changes with respect to basin size to gain insight into forecasting
in small, likely ungauged, basins. The ability of the HL-RDHM to produce NSE values above 0.4
for several upstream locations indicates the potential for using this distributed model to simulate
discharge at interior basins, when only calibrating the model to the basin outlet. However, for the
NLDAS-2 precipitation product, the skill of the model decreased for subbasins less than 250 km2, this
represents 20–40% of the total basin area depending on the watershed. For basins smaller than 250 km2,
the relationship of model skill to basin area becomes less predictable. These basin size thresholds
were larger when using the Stage IV, and average model performance was poorer when using Stage
IV precipitation.

In the cases shown, the coarser resolution NLDAS-2 product performed better overall, although for
some mid-summer events the finer resolution Stage IV produced more accurate hydrographs. This study
corroborates others illustrating that inputs with higher spatial and/or temporal resolution may not
necessarily result in more accurate simulations of hydrologic variables [39,54,59,60], including subbasin
streamflow. The continued improvement of spatially distributed inputs, calibration approaches, and
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model structures will increase the potential for using a spatially distributed model to advance current
emergency management and decision-support services. Application of distributed models at finer
watershed scales should be a continued focus of model development research.
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